A Birth and Death Process Related to the Rogers–Ramanujan Continued Fraction
نویسندگان
چکیده
منابع مشابه
A Birth and Death Process Related to the Rogers-Ramanujan Continued Fraction
Time dependent system size probabilities of a birth and death process related to the Rogers-Ramanujan continued fraction are obtained. The range for the parameter in this continued fraction is obtained to ensure the positivity of the recursively defined birth and death rates. The general behavior of the birth and death rates is described and the asymptotic behavior of the transition probabiliti...
متن کاملThe Z-transform Applied to a Birth-death Process Having Varying Birth and Death Rates
The analysis of a birth-death process using the z-transform was recently reported for processes having fixed transition probabilities between states. The current report extends that analysis to processes having transition probabilities that can differ from state to state. It is then shown that the model can be used to study practical queuing and birth-death systems where the arrival, birth, ser...
متن کاملRelated factors to continued breastfeeding in infants
Introduction: Breast milk is the best nutrition for infants. Although feeding mostly begins with breast milk but its continuation is ignored in some cases. In this regard, identification of related factors to breastfeeding is important. Objective: The purpose of this study is to determine related factors to continuing breastfeeding in hospitalized infants. ...
متن کاملA q-CONTINUED FRACTION
Let a, b, c, d be complex numbers with d 6= 0 and |q| < 1. Define H1(a, b, c, d, q) := 1 1 + −abq + c (a + b)q + d + · · · + −abq + cq (a + b)qn+1 + d + · · · . We show that H1(a, b, c, d, q) converges and 1 H1(a, b, c, d, q) − 1 = c − abq d + aq P∞ j=0 (b/d)(−c/bd)j q (q)j(−aq/d)j P∞ j=0 (b/d)(−c/bd)j q (q)j(−aq/d)j . We then use this result to deduce various corollaries, including the followi...
متن کاملA Specialised Continued Fraction
We display a number with a surprising continued fraction expansion and show that we may explain that expansion as a specialisation of the continued fraction expansion of a formal series: A series ∑ chX −h has a continued fraction expansion with partial quotients polynomials in X of positive degree (other, perhaps than the 0-th partial quotient). Simple arguments, let alone examples, demonstrate...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 1998
ISSN: 0022-247X
DOI: 10.1006/jmaa.1998.6005